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Abstract

In this paper we argue that Lafont’s system of Soft Linear Logic [3] is
expressive enough to characterize any level of the Polynomial Hierarchy.
This characterization is obtained using the existing additive connectives
and does not require the introduction of new rules to SLL.

1 Introduction

In [4], Mairson and Terui showed that the additives are superfluous for the
characterization of polynomial time algorithms in Lafont’s Soft Linear Logic
(SLL) [3]. Nevertheless, provided only external (lazy) reduction of proof nets is
used, the additives do not violate the polynomial bound on reduction and, we
argue, may be used, without modification, to express nondeterminism in SLL.
The idea is to define a new data type T of “lazy” trees with additive branch-
ing and boolean leaves using second-order quantification and to investigate the
Kleisli category corresponding to this monad. Since generic maps for the se-
quent S(n) ⊢ B represent polynomial time algorithms (see [3]), we argue in this
paper that generic maps for the sequent S

(n) ⊢ T(B) should represent nonde-
terministic polynomial time algorithms. Unfortunately, this idea does not work
out quite so cleanly (without adding new rules explicitly) as data types in SLL
do not, in general, form monads. Nevertheless, with a slightly less elegant en-
coding, this idea can be used to obtain a characterization of NP in SLL which
has an easy generalization to any level of the Polynomial Hierarchy. This char-
acterization is novel in that it encodes a polynomial time verifier directly in
SLL, and does not require a nondeterministic cut-elimination procedure and/or
modified rules for the additives (cf. [5, 6, 1, 2]). Due to space limitations, only
the main ideas behind the characterizations are given here. The full details will
be presented in future work.
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2 Soft Linear Logic

In this section we briefly recall Lafont’s Soft Linear Logic [3]. Formulas are
given by the following grammar:

A ::= α | A&A | 1 | A⊗A | A ⊸ A | !A | ∀α.A

where α is an atomic type variable. Sequents are written intuitionistically in
the form Γ ⊢ A where Γ is a finite (possibly empty) list of formulas and A is a
single formula. The rules are as follows:

• Identity, exchange and cut:

A ⊢ A
(id)

Γ, A,B ⊢ C

Γ, B,A ⊢ C
(ex)

Γ ⊢ A ∆, A ⊢ C

Γ,∆ ⊢ C
(cut)

• Multiplicatives:

Γ ⊢ A ∆ ⊢ B
Γ,∆ ⊢ A⊗B

Γ, A,B ⊢ C

Γ, A⊗B ⊢ C ⊢ 1

Γ ⊢ C
Γ,1 ⊢ C

Γ, A ⊢ B

Γ ⊢ A ⊸ B

Γ ⊢ A ∆, B ⊢ C

Γ,∆, A ⊸ B ⊢ C

• Additives:

Γ ⊢ A Γ ⊢ B
Γ ⊢ A&B

Γ, A ⊢ C

Γ, A&B ⊢ C

Γ, B ⊢ C

Γ, A&B ⊢ C

• Soft exponential rules soft promotion and multiplexing (of rank n ≥ 0):

Γ ⊢ A
!Γ ⊢ !A

Γ, A(n) ⊢ C

Γ, !A ⊢ C

• Quantification rules:

Γ ⊢ A
Γ ⊢ ∀α.A

α /∈ FTV (Γ)
Γ, A[B/α] ⊢ C

Γ, ∀α.A ⊢ C

Recall that for any polynomial expression P and formula A, the expression A〈P 〉
denotes formula A with each subformula of the form !B replaced by BP (see [3]
for details).

Proofs in this paper will be presented using the sequent calculus formulation
above, but will be implicitly identified with their corresponding proof nets as
given in [3]. Also, nets will be reduced using external reduction only. The
main result of Lafont’s paper is that generic1 proofs for the sequent S

(n) ⊢ B

correspond to polynomial time algorithms and vice versa.

1A generic proof is one without multiplexing.
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3 Lazy Trees and Nondeterminism

Recall the inductive data types in SLL, including the type of booleans B =
∀α.(α & α) ⊸ α and the type of boolean strings S = ∀α.!((α ⊸ α) & (α ⊸

α)) ⊸ α ⊸ α. We add to this the data type of lazy trees with parameter types
U and V :

TU,V = ∀α.!(α⊗ U & α⊗ U ⊸ α) ⊸ (V ⊸ α) ⊸ α

If U = M ⊸ M and V = M, where M is the type representing Turing machines
(see [3]), we claim that generic proofs for the sequent S

(n) ⊢ T〈P 〉 correspond
to nondeterministic polynomial time computations, and vice versa.2

Recall that each SLL proof can be interpreted in second-order intuitionistic
linear logic as SLL is a subsystem of ILL. Therefore, such a tree can be evaluated
(in ILL) to true iff one its branches terminates in an accepting state. This leads
to the following definition.

Definition 3.1 We say that a generic proof π for the sequent S
(n) ⊢ T〈P 〉

accepts a boolean string of type S if the corresponding tree T〈P 〉 evaluates (in
the above sense) to the net representing true. The set of all boolean strings that
are accepted by π, denoted L(π), is called the language corresponding to π.

We have the theorem:

Theorem 3.2 Let π be a generic proof for the sequent S
(n) ⊢ T〈P 〉. Then

L(π) ∈ NP .

Proof: For each input of type S that is accepted by π, there is a generic
proof for the sequent ⊢ T〈P 〉 ⊸ B that encodes a path to a leaf of the tree
that evaluates to true (otherwise, all branches evaluate to false). Indeed, let
U = M ⊸ M and V = M, and recall that there is a generic proof out for the
sequent M ⊢ B which says if the machine is in an accepting state. If a tree of
type T has rank n, we instantiate α at M&n := M& · · ·&M (max(n, 1) times)
and let γ denote a generic proof for the sequent M&n ⊗ U &M

&n ⊗ U ⊢ M
&n

which encodes a particular path to a leaf of the tree and evaluates the current
configuration with a net of type U :

γ

M
&n ⊗ U &M

&n ⊗ U ⊢ M
&n

⊢ M
&n ⊗ U &M

&n ⊗ U ⊸ M
&n

⊢ !(M&n ⊗ U &M
&n ⊗ U ⊸ M

&n)

diag

V ⊢ M
&n

⊢ V ⊸ M
&n

π1out

M
&n ⊢ B

(V ⊸ M
&n) ⊸ M

&n ⊢ B

!(M&n ⊗ U &M
&n ⊗ U ⊸ M

&n) ⊸ (V ⊸ M
&n) ⊸ M

&n ⊢ B

T ⊢ B

2The presence of the polynomial P in the conclusion is unfortunate; it is a consequence of

the fact that constructors of data types in SLL cannot in general be expressed uniformly.

3



Note that this proof is generic, so there is an analogous generic proof for the
sequent T〈P 〉 ⊢ B for any polynomial P . Then evaluation:

π

S
(n) ⊢ T〈P 〉 B ⊢ B

S
(n),T〈P 〉 ⊸ B ⊢ B

is a polynomial time verifier for the language. (Note that the time bound does
not depend on the size of the “certificate”.) ✷

Conversely, we have:

Theorem 3.3 If a predicate is computable on boolean strings by a nondetermin-
istic Turing machine in polynomial time P (n) and in polynomial space Q(n),
there is a generic proof for the sequent S

(degP+degQ+1) ⊢ T〈P 〉 which corre-
sponds to this predicate.

Proof: There is a generic proof init for the sequent S
(degQ+1) ⊢ M〈Q〉 that

writes a string of size n on a tape of size Q(n) and puts the machine in the
starting state. The nondeterministic transition function is encoded by a pair of
generic proofs, left and right, each of type U = M〈Q〉 ⊸ M〈Q〉. All together,
we get the generic proof:

α ⊢ α
left
⊢ U

α ⊢ α⊗ U
α ⊢ α

right

⊢ U
α ⊢ α⊗ U

α ⊢ α⊗ U & α⊗ U α ⊢ α
α⊗ U & α⊗ U ⊸ α, α ⊢ α

α⊗ U & α⊗ U ⊸ α ⊢ α ⊸ α

(α⊗ U & α⊗ U ⊸ α)P ⊢ (α ⊸ α)P

init

S
(degQ+1) ⊢ V

α ⊢ α α ⊢ α
α ⊸ α, α ⊢ α

S
(degQ+1), α ⊸ α, V ⊸ α ⊢ α

S
(degQ+1), (α ⊸ α)P ⊸ α ⊸ α, (α⊗ U & α⊗ U ⊸ α)P , V ⊸ α ⊢ α

S
(degQ+1),N〈P 〉, (α⊗ U & α⊗ U ⊸ α)P , V ⊸ α ⊢ α

S
(degP+degQ+1), (α⊗ U & α⊗ U ⊸ α)P , V ⊸ α ⊢ α

S
(degP+degQ+1) ⊢ (α⊗ U & α⊗ U ⊸ α)P ⊸ (V ⊸ α) ⊸ α

S
(degP+degQ+1) ⊢ T〈P 〉

where V = M〈Q〉 and U = M〈Q〉 ⊸ M〈Q〉, which corresponds to the NP-
predicate. ✷

4 The Polynomial Hierarchy

The results of the previous section generalize to any level of the Polynomial
Hierarchy (PH) by first encoding a second lazy product type A × B which
behaves in a similar fashion to the & rule. The sum type in SLL may be used
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for this purpose. We may think of × as a universal product and & as an
existential product. We then define a second type of lazy trees:

T
∗

U,V = ∀α.!(α⊗ U × α⊗ U ⊸ α) ⊸ (V ⊸ α) ⊸ α

which evaluates to true (in ILL) iff all of its branches are in accepting states.
More generally, we define a hierarchy of lazy tree types inductively for each
i ≥ 1 as follows:

T
Σ1

U,V = TU,V T
Π1

U,V = T
∗

U,V T
Σi+1

U,V = T
U,T

Πi
U,V

T
Πi+1

U,V = T
∗

U,T
Σi
U,V

along with the appropriate notions of evalution in ILL (i.e., the appropriate
generalization of def. 3.1). This leads to the following theorem whose proof will
be deferred to the full version of this paper.

Theorem 4.1 For each i ≥ 1, generic proofs in SLL for the sequent S
(n) ⊢

T
Σi〈P 〉 (respectively, S(n) ⊢ T

Πi〈P 〉) correspond to algorithms in ΣiP (respec-
tively, ΠiP), and vice versa.
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