
The labelling approach to precise resource analysis
on the source code, revisited?

Mauro Piccolo1, Claudio Sacerdoti Coen2, and Paolo Tranquilli2

Department of Computer Science, University of Turin1,
Department of Computer Science and Engineering, University of Bologna2

piccolo@di.unibo.it, Claudio.SacerdotiCoen@unibo.it, Paolo.Tranquilli@unibo.it

Abstract. The labelling approach is a technique to lift cost models for non-functional properties of
programs from the object code to the source. It allows to perform precise resource analysis of programs
directly on the source code, reconciling functional and non functional analysis.
The labelling approach is based on the preservation of the structure of the high level program in every
intermediate language used by the compiler. In order to prove the cost model correct, the semantics of
programs is described with a labelled transition system that makes the program structure observable.
The original version of the labelling approach does not simply scale to function calls and it may not
work properly with source instructions that have several predecessors. In the talk we will present an
improved version that take cares of both limitations and that is more modular.
Most of the results presented have being mechanised in the interactive theorem prover Matita.

1 Introduction

The labelling approach has been introduced in [3] as a technique to lift cost models for non-functional proper-
ties of programs from the object code to the source code. Examples of non-functional properties are execution
time, amount of stack/heap space consumed and energy required for communication. The basic premise of
the approach is that it is impossible to provide a uniform cost model for an high level language that is pre-
served precisely by a compiler. For instance, two instances of an assignment x = y in the source code can be
compiled very differently according to the place (registers vs stack) where x and y are stored at the moment
of execution. Therefore a precise cost model must assign a different cost to every occurrence, and the exact
cost can only be known after compilation.

According to the labelling approach, the compiler is free to compile and optimise the source code without
any major restriction, but it must keep trace of what happens to basic blocks during the compilation. The
cost model is then computed on the object code. It assigns a cost to every basic block. Finally, the compiler
propagates back the cost model to the source level, assigning a cost to each basic block of the source code.

Implementing the labelling approach in a certified compiler allows to reason formally on the high level
source code of a program to prove non-functional properties that are granted to be preserved by the compiler
itself. The trusted code base is then reduced to 1) the interactive theorem prover (or its kernel) used in the
certification of the compiler and 2) the software used to certify the property on the source language, that can
be itself certified further reducing the trusted code base. In [3] the authors provide an example of a simple
certified compiler that implements the labelling approach for the imperative While language [7], that does
not have pointers and function calls.

The labelling approach has been shown to scale to more interesting scenarios. In particular in [2] it has been
applied to a functional language and in [8] it has been shown that the approach can be slightly complicated
to handle loop optimisations and, more generally, program optimisations that do not preserve the structure
of basic blocks. On-going work also shows that the labelling approach is also compatible with the complex
analyses required to obtain a cost model for object code on processors that implement advanced features like
pipelining, superscalar architectures and caches.

In the European Project CerCo (Certified Complexity, http://cerco.cs.unibo.it) [1] we are certifying
a labelling approach based compiler for a large subset of C to 8051 object code. The compiler is moderately
optimising and implements a compilation chain that is largely inspired to that of CompCert [5,6]. Compared

? The project CerCo acknowledges the financial support of the Future and Emerging Technologies (FET) programme
within the Seventh Framework Programme for Research of the European Commission, under FET-Open grant
number: 243881

http://cerco.cs.unibo.it


to work done in [3], the main novelties and source of difficulties are 1) the presence of function calls; 2) their
interaction with stateful hardware components; 3) the realisation that instructions with multiple predecessors
and instructions that need to immediately precede the beginning of a basic block could not be compiled
preserving all the invariants required by the labelling approach.

The aforementioned difficulties forced us to rethink the labelling approach. Therefore we proposed in [4]
a much more complex solution that accommodates function calls, but does not solve the other problems. In
this talk we will describe a third version of the labelling approach which greatly simplifies the second version
and solves at once all the issues known at this time. Most of the results presented have also been formalised
in the Matita interactive theorem prover, and we expect to complete the formalisation in the near future.

The plan of the abstract is the following. In Section 2 we summarise the original version of the labelling
method. In Section 3 we only hint at the issues involved with the original methods and we suggest possible
solutions. Instead in the talk we plan to present the technical statements and proofs as formalised in Matita.

2 The (basic) labelling approach

We briefly explain the labelling approach as introduced in [3] on the example in Figure 1. The user wants to
analyse the execution time of the program (the black lines in Figure 1a). He compiles the program using a
special compiler that first inserts in the code three label emission statements (EMIT Li) to mark the beginning
of basic blocks (Figure 1a); then the compiler compiles the code to machine code (Figure 1b), granting that
the execution of the source and object code emits the same sequence of labels (L1;L2;L2;L3 in the example).
This is achieved by keeping track of basic blocks during compilation, avoiding all optimisations that alter the
control flow. The latter can be recovered with a more refined version of the labelling approach [8], but in the
present abstract we stick to this simple variant for simplicity. Once the object code is produced, the compiler
runs a static code analyser to associate to each label L1, . . . , L3 the cost (in clock cycles) of the instructions
that belong to the corresponding basic block. For example, the cost k1 associated to L1 is the number of
cycles required to execute the block I3 and COND l2, while the cost k2 associated to L2 counts the cycles
required by the block I4, GOTO l1 and COND l2. The compiler also guarantees that every executed instruction
is in the scope of some code emission label, that each scope does not contain loops (to associate a finite cost),
and that both branches of a conditional statement are followed by a code emission statement. Under these
assumptions it is true that the total execution cost of the program ∆t is equal to the sum over the sequence
of emitted labels of the cost associated to every label: ∆t = k(L1;L2;L2;L3) = k1 + k2 + k2 + k3. Finally,
the compiler emits an instrumented version of the source code (Figure 1c) where label emission statements
are replaced by increments of a global variable cost that, before every increment, holds the exact number
of clock cycles spent by the microprocessor so far: the difference ∆cost between the final and initial value
of the internal clock is ∆cost = k1 + k2 + k2 + k3 = ∆t. Finally, the user can employ any available method
(e.g. Hoare logic, invariant generators, abstract interpretation and automated provers) to certify that ∆cost

never exceeds a certain bound [1], which is now a functional property of the code.

EMIT L1;
I1;
for (i=0; i<2; i++) {

EMIT L2;
I2;

}
EMIT L3;

(a) The input program (black lines)
with its labelling (red lines).

EMIT L1
I3

l1: COND l2
EMIT L2
I4
GOTO l1

l2: EMIT L3

(b) The output labelled ob-
ject code.

cost += k1;
I1;
for (i=0; i<2; i++) {

cost += k2;
I2;

}
cost += k3;

(c) The output instrumented code.

Fig. 1: The labelling approach applied to a simple program.. The Ii are sequences of instructions not containing
jumps or loops.

3 The labelling approach revisited.

We briefly revise here some hidden assumptions and limitations of the original labelling approach described
in Section 2 and called basic labelling approach in the rest of this abstract. We also hint at the solutions. The
technical details and all the formal statements will be given in the presentation only.

2



3.1 Conditional statements and multiple predecessors

Assumptions: In order for the cost model to account for every instruction, object code instructions with
multiple successors (e.g. conditional branches) must pass control to basic blocks that start with a label
emission statement. Moreover, the cost of execution of the branching instruction must be constant whatever
branch is taken.

The problem: In order to grant the first previous assumption, label emissions are introduced after every
branch in the source code and the compilation is expected to preserve this invariant. The instruction that
starts a branch, however, may have multiple predecessors. While this is rarely the case in an high level struc-
tured language, it is still be possible in C (due to gotos and the fall-back behaviour of switch branches) and
it becomes very common during intermediate compilation phases (e.g. the instruction that follows a while

loop may be reached from two different jumps if the loop hoisting optimisation is applied). Moreover, in
actual architectures it may be the case that an high level branching instruction needs to be compiled to an
instruction that locally branches to a non conditional jump to the actual beginning of the branch. Exam-
ple: if(E) { EMIT L; I } may be compiled to SJNEQ l1; JUMP l3; l1: JUMP l2; ... l2: EMIT L; I

where the short conditional branch SJNEQ can only jump within 256 bytes and the label emission is too far
away. Hence the need for the indirect jump through JUMP l2. This happens, for instance, in the hardware
architecture we picked in CerCo.

Clearly, the example code above violates the requirement because the JUMP l3 instruction is not in the
scope of any label and its cost will be missed. We would like to move the label emission away from I and put
it just before the jump. This is incorrect as well when the block of I can be reached from other predecessors
because in this case the label L would be emitted only if coming from the if instruction. The traces emitted
in the source and object code would be different and the cost computed at the source level would be wrong.

The solution: in order to solve the problem, we change the labelling approach modifying the syntax (and
semantics) of all the languages involved. In place of (or in addition to) having label emission statements, we
incorporate label emissions into all branching instructions. For example, an if statement would now have
syntax if(E) L:{I} meaning that the label L is emitted when the block I is reached coming from the if

branch. If I has another predecessor (e.g. a GOTO statement), this other predecessor will be label emitting too
(e.g. GOTO L:l to mean jump to location l emitting the label L). Instrumentation of the source code is now
more complex, requiring a memory cell to remember the last block visited and thus pay the correct cost to
be emitted at the beginning of a basic block.

The issue seen above is now solved: the SJNEQ instruction will emit the label L that will pay for both
JUMP l3 and I. Similarly, the other assembly level predecessor of I will emit another label that will pay for I.
This new schema also allows to cope with architectures where a branching instruction has a different cost
according to the branch taken. It suffices to make the labels emitted by the instruction pay the cost of the
branching instruction. This is not possible in the basic labelling approach because the label emissions can
have multiple predecessors.

3.2 Function calls

Let us now consider a simple program written in C that contains a function pointer call inside the scope
of the cost label L1, in Figure 2a. The labelling method works exactly as before, inserting code emission
statements/cost variable increments at the beginning of every basic block and at the beginning of every
function. The compiler still grants that the sequence of labels observed on the two programs are the same. A
new difficulty appears when the compiler needs to statically analyse the object code to assign a cost to every
label. What should the scope of the L1 label be? After executing the I4 block, the CALL statement passes
control to a function that cannot be determined statically. Therefore the cost of executing the body must be
paid by some other label (hence the requirement that every function starts with a code emission statement).
What label should pay for the cost for the block I5? The only reasonable answer is L1, i.e. the scope of labels
should extend to the next label emission statement or the end of the function, stepping over function calls.

The latter definition of scope is adequate on the source level because C is a structured language that
guarantees that every function call, if it returns, passes control to the first instruction that follows the call.
However, this is not guaranteed for object code, the backend languages of a compiler and, more generally, for
unstructured languages that use a writable control stack to store the return address of calls. For example,
I6 could increment by 1 the return address on the stack so that the next RETURN would start at the second

3



void main() {
EMIT L1;
I1;
(*f)();
I2;

}

void g() {
EMIT L2;
I3;

}

(a) The input labelled C program.

main:
EMIT L1
I4
CALL
I5
RETURN

g:
EMIT L2
I6
RETURN

(b) The output labelled object code.

Fig. 2: An example compilation of a simple program with a function pointer call.

instruction of I5. The compiler would still be perfectly correct if a random, dead code instruction was added
after the CALL as the first instruction of I5. More generally, there is no guarantee that a correct compiler that
respects the functional behaviour of a program also respects the calling structure of the source code. Without
such an assumption, however, it may not be true that the execution cost of the program is the sum of the
costs associated to the labels emitted. In our example, the cost of I5 is paid by L1, but in place of I5 the
processor could execute any other code after g returns. We are therefore in the following situation.

Assumptions: to statically associate a cost to every block/label, the compiler needs to statically predict that
all instructions in the block will be reached during computation. Moreover, if the sequence of instructions in
the block is not sequentially executed, the function that computes the cost of the block given the cost of the
instructions need to be commutative to allow reordering of instructions.

The problem: in the intermediate languages and the object code it is not possible to statically predict which
instruction will be executed after a function returns. Thus, in order to extend the scope of blocks after function
calls, we need to grant an additional property on the object code that is not granted by the basic labelling
approach. In the latter case, moreover, the body of the function called is executed before the instructions
after the function returns, requiring the function that computes the cost to be commutative. Because of
stateful hardware components (e.g. caches and pipelines), the cost of execution of an instruction depends on
the execution history. Therefore the function that given the steps in history computes the total cost is not
commutative. Thus extending blocks after function calls does not scale to modern hardware.

We investigated two possible solutions.

First solution: we add more structure to execution traces. An execution trace is no longer a flat stream
of observables. Instead, it becomes a recursively defined datatype where observables that correspond to
function calls carry a nested copy of the datatype that describes the instructions executed in the function
body. Moreover, it is now possible to observe the address of instructions in memory. Finally, we define
the requirement that the observed function call and the instruction that follows the sub-datatype must be
consecutive in memory. The only programs whose traces satisfy the requirement are those that do not tamper
with the stack and such that every function call terminates returning just after the call.

The next step consists in defining local simulation conditions that have the following property: if every
step in the source program is simulated by a structured trace fragment that satisfy the local conditions,
then every trace in the source code is simulated by a structured trace in the object code that satisfy the
requirement.

The main drawbacks of this solutions are: 1) the local simulation conditions are quite technical and the
beauty of the simulation argument is lost in the details. We will present them and the simulation argument
during the talk; 2) it allows for block scopes that extend after function calls, but it does not solve the problem
with stateful hardware components since it still requires the cost function to be commutative.

Second solution: intuitively, we just ask every function call to be immediately followed by a label emission
statement. Thus the scope of blocks no longer extends after function calls, solving both issues. More technically,
we require return instructions to emit the cost label associated to the predecessor of the instruction control is
returned to. No additional structure on execution traces is required and the simulation argument is essentially

4



the same used with standard LTS and the basic labelling approach. Moreover, stateful hardware components
are seamlessly supported.

The main drawbacks of this solution are: 1) the solution requires many more labels to be inserted in the
source code, since blocks are now smaller. In turn, this makes the computation of cost invariants for source
programs more difficult, the proof that the invariants hold harder and the computed cost less readable; 2) in
order to reason on the cost of the source program, the user now needs to know that the value of the cost

variable at the end of a block that contains function calls is the sum of the increments that occur after every
call. This is not trivial because it requires a proof of termination of every call involved. In the first solution,
instead, just a global assumption of termination of the whole program was required.

Amendment to the second solution: in order to mitigate the problems of the second solution, we studied a
preliminary compilation step that turns a program labelled according to the first solution into one labelled
according to the second solution. In practice, more observables are introduced just after function calls. The
transformation also builds a sort of inverse function that maps traces of the compiled program back to traces
of the source program (removing the new observables) and costs of blocks of the compiled program to costs
of blocks of the source program (by consolidating the blocks together).

The benefits of this pass is that the user can still reason with smaller blocks and simpler costs like in the
first solution, and the remaining parts of the compiler do not need to care about extra invariants like in the
second solution. The proof of simulation is also as simple as in the second solution. The drawback is that the
consolidation is not always possible in case of non commutative costs (e.g. in presence of stateful hardware
components).

The additional pass was suggested as an obvious improvement of the second solution by an anonymous
reviewer of a previous paper. Surprisingly at first, the proof of correctness of the pass is actually quite complex
and its mechanisation in Matita is not finished yet. We will describe in the talk the reasons for the complexity.
Intuitively, however, it is clear that the pass is correct only under non trivial assumptions like termination of
every initiated function call. Moreover, following the literature we described the pass on a simple programming
language equipped with an SOS semantics. In SOS it happens that parts of the source program are duplicated
during execution (e.g. when entering the body of a while loop). In order for the proof to go through, we
need to establish global invariants of the machine state that relate all copies of the same statements. This is
required to keep track of labels that, being attached to instructions, are duplicated as well. In retrospect, it is
likely that the proof could be greatly simplified abandoning the SOS semantics in favour of some alternative
description where the code is read-only. This will be discussed in the talk, but left as future work.

References

1. Amadio, R., Asperti, A., Ayache, N., Campbell, B., Mulligan, D., Pollack, R., Régis-Gianas, Y., Sacerdoti Coen,
C., Stark, I.: Certified complexity. Procedia Computer Science 7, 175–177 (2011)

2. Amadio, R., Régis-Gianas, Y.: Certifying and reasoning on cost annotations of functional programs. In: Pea,
R., Eekelen, M., Shkaravska, O. (eds.) Foundational and Practical Aspects of Resource Analysis, Lecture Notes
in Computer Science, vol. 7177, pp. 72–89. Springer Berlin Heidelberg (2012), http://dx.doi.org/10.1007/

978-3-642-32495-6_5, extended version to appear in Higher Order and Symbolic Computation, 2013
3. Ayache, N., Amadio, R., Régis-Gianas, Y.: Certifying and reasoning on cost annotations in C programs. In:

Stoelinga, M., Pinger, R. (eds.) Formal Methods for Industrial Critical Systems, Lecture Notes in Computer Science,
vol. 7437, pp. 32–46. Springer Berlin Heidelberg (2012), http://dx.doi.org/10.1007/978-3-642-32469-7_3

4. Boender, J., Mulligan, D.P., Piccolo, M., Coen, C.S., Tranquilli, P.: CerCo Report n. D4.4, Back-end Correct-
ness Proof. Technical report of the eu project cerco, University of Bologna (2013), http://cerco.cs.unibo.it/
raw-attachment/wiki/WikiStart/D4_4.pdf

5. Leroy, X.: Formal verification of a realistic compiler. Communications of the ACM 52(7), 107–115 (2009), http:
//gallium.inria.fr/~xleroy/publi/compcert-CACM.pdf

6. Leroy, X., Blazy, S.: Formal verification of a C-like memory model and its uses for verifying program transformations.
Journal of Automated Reasoning 41(1), 1–31 (2008)

7. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer-Verlag New York, Inc., Secaucus,
NJ, USA (1999)

8. Tranquilli, P.: Indexed labels for loop iteration dependent costs. In: Proceedings 11th International Workshop on
Quantitative Aspects of Programming Languages and Systems, QAPL 2013. pp. 19–33. Electronic Proceedings in
Theoretical Computer Science (EPTCS) (2013)

5

http://dx.doi.org/10.1007/978-3-642-32495-6_5
http://dx.doi.org/10.1007/978-3-642-32495-6_5
http://dx.doi.org/10.1007/978-3-642-32469-7_3
http://cerco.cs.unibo.it/raw-attachment/wiki/WikiStart/D4_4.pdf
http://cerco.cs.unibo.it/raw-attachment/wiki/WikiStart/D4_4.pdf
http://gallium.inria.fr/~xleroy/publi/compcert-CACM.pdf
http://gallium.inria.fr/~xleroy/publi/compcert-CACM.pdf

	The labelling approach to precise resource analysis on the source code, revisited
	Introduction
	The (basic) labelling approach
	The labelling approach revisited.
	Conditional statements and multiple predecessors
	Function calls



